

The role of pharmacokinetics in optimizing HA treatment:

from theory to practice.

Alfonso Iorio, MD, PhD, FRCPC

Professor and Chair, Health Research Methods, Evidence, and Impact

Director, Hamilton-Niagara Hemophilia Program

McMaster University, Canada

Approval number PP-JIV-JP-1163-20-09

BAYER E R

Alfonso Iorio, MD, PhD, FRCP(C)

Department of Health Research Methods, Evidence and Impact & Department of Medicine, McMaster University, Hamilton, Canada

- // Professor and Chair at the department of Health Research Methods, Evidence, and Impact at McMaster University Canada
- // Director of the Health Information Research Unit (HiRU) of the Hamilton-Niagara Hemophilia Program <u>http://hiru.mcmaster.ca/hiru</u>
- // Chair of the Canadian Bleeding Disorders Registry Committee (CBDR)
- Principal Investigator of the Web Application for Population Pharmacokinetic in Hemophilia (WAPPS) project <u>www.wapps-hemo.orq</u>
 Co-investigator of the Patient Reported Outcomes, Burden, and Experiences (PROBE).

Past-chair of the WFH Data and Demographics committee
 Co-chair of the World Bleeding Disorders Registry (WBDR)

Educational learning for the talk

1) A) Provide the foundational elements for the role and value of individualized population PK profiling

- B) Discuss the practicalities of performing population PK profiling with WAPPS-Hemo
- 2) A) Present evidence supporting the clinical results you can expect to see by adopting WAPPS-Hemo based hemophilia treatment
 B) focusing on switching patients to EHL factor VIII

Note: Main focus on prophylaxis based on factor concentrates

WFH 2020 Guidelines – 3rd edition Recommendations

"For patients with haemophilia A or B with a severe phenotype (may include patients with moderate haemophilia), the WFH strongly recommends that such patients be on prophylaxis sufficient to **prevent bleeds at all times**."

Recommendation 6.1.1

"Prophylaxis should be individualised, taking into consideration patient bleeding phenotype, joint status, individual pharmacokinetics, and patient self-assessment and preference."

Recommendation 6.3.1

Minimal PK evaluation

TABLE 6-6Tailoring prophylaxis to patient needs

Tailoring approach

Pharmacokinetics

- Involves undertaking at least a minimal PK evaluation of patients and then adjusting the dose/frequency of factor infusions in order to achieve in each patient a predetermined factor trough level.
- Can be estimated with population PK modeling (e.g., WAPPS-Hemo)^a using Bayesian analysis

British Journal of Haematology, bjh.16704. https://doi.org/10.1111/bjh.16704

One size does NOT fit all.

Population pharmacokinetic – basic concepts

Item	Classical PK Study	Population PK Study
Focus	Drug (and SAMPLED individuals)	Population (and DRUG if enough cases)
Individual profiling	Full set of samples needed	
Pros	Fewer patients; easy math;	[Few] sparse sample; predictive value
Cons	Many draws; no predictive value	Many patients; computationally complex

Population PK – can be used to fairly compare different treatments

In the same real or virtual population

Preijers T et al. Eur J Clin Pharmacol. 2021 Aug;77(8):1193-1200. Gorkom BAP et al. Br J Clin Pharmacol. 2021 Jun;87(6):2602-2613.
Bukkems LH et al. Thromb Haemost. 2021 Jun;121(6):731-740. Carcao MD et al. J Thromb Haemost. 2019 Jul;17(7):1085-1096.
Tardy B et al. Haemophilia. 2022 Jul;28(4):542-547. Versloot O et al. Hemasphere. 2022 Mar 21;6(4):e694.

Educational learning for the talk

- 1) A) Provide the foundational elements for the role and value of individualized population PK profiling
 - B) Discuss the practicalities of performing population PK profiling with WAPPS-Hemo
- 2) A) Present evidence supporting the clinical results you can expect to see by adopting WAPPS-Hemo based hemophilia treatment
 B) focusing on switching patients to EHL factor VIII

Note: Main focus on prophylaxis based on factor concentrates

Population pharmacokinetic – Can we trust it? Is it worth?

PopPk with

- 2 sample including pre-dose and info on previous infusion retains 85% of the precision of a classical individual profile
- >5 sample consistently beats the classical approach

Benefits when used at the POC:

- 1. It does not require wash out
- 2. Can precisely estimate a regimen, of any complexity
- 3. Can precisely predict the impact of changing dose/frequency
- 4. Can "merge" samples obtained after different infusion
- 5. Can model the changes associated with changes in age, weight, height, (VWF levels)

WAPPS-Hemo: worldwide usage

Japan

271.36

PKs per 1M people Finland 124,9061 (6 Centres) By the numbers Korea, Republic Of 5.837 🕅 741 CENTRES (12 Centres) ******* 13095 PATIENTS United States 8.1261 **Ξ** 27646 TOTAL PK STUDIES (112 Centres) ₩ 20390 **UNIQUE PK PROFILES** 1.9628 Colombia (21 Centres) 20.1035 = 3136 PK: CHILDREN 6-11 Taiwan (25 Centres) 46.059 = 2137 PK: CHILDREN 0-5 (25 Centres) ₩ 708 **MYWAPPS USERS Ξ** 79512 MYWAPPS INFUSIONS

WAPPS-Hemo is a global network

A growing network of hemophilia treatment centres since 2015.

Personalizing treatment and tailoring prophylaxis on an international level.

Estimating an individual PK profile with pop PK approach

New ISTH guidelines (popPK + sparse sampling)

McMaster

University

TEALTH RESEARCH METHOD

Iorio A, Blanchette V, Blatny J, Collins P, Fischer K, Neufeld E J Thromb Haemost. 2017 Oct 12. doi: 10.1111/jth.13867.

Iorio A, et al. Performing and interpreting individual pharmacokinetic profiles in patients with Hemophilia A or B: Rationale and general considerations. Res Pract Thromb Haemost. 2018 Jul 20;2(April):1–14. doi. 10.1002/rth2.12106

Simplified PK study

Educational webinar series

 WAPPS-Hemo YouTube channel: <u>https://www.youtube.com/@wappshemo682/featured</u>

"Rewards" and "usable outputs"

	Viewing	Periods	1 month	3 months	6 m
--	---------	---------	---------	----------	-----

nonths 12 months

lune 2022	15,000	15/15	100%	0	0	Based on last 12 months
5011C 2022	units	infusions	adherence	notes	bleeds	39%
May 2022	16,500	17/16	100%	0	0 blaads	Time between 3% and 15%
	Units	Inteatoria	adriefence	liotes	Diseus	41%
April 2022	15,000 units	15/15 infusions	100% adherence	0 notes	0 bleeds	Time above 15%
	15 500	16/15	100%	0	0	159/176
March 2022	units	infusions	adherence	notes	bleeds	intusions
February 2022	14,000	14/14	100%	0	0	90%
	units	infusions	adherence	notes	bleeds	
January 2022	16,000 units	16/16	100%	0	0 blands	158,000 Units
	U10X3	initiationa	dunisience	1 Ballator	610603	
December 2021	15,000 units	15/15 infusions	100% adherence	0 notes	0 bleeds	Bleeds
		10000				0
November 2021	16,000 units	16/15 infusions	100% adherence	0 notes	0 bleeds	O Annualized Bleeding Rate
October 2021	15,000	15/15	100%	0	0	
	units	infusions	adherence	notes	bleeds	HEMALYTIC

Educational learning for the talk

- 1) A) Provide the foundational elements for the role and value of individualized population PK profiling
 - B) Discuss the practicalities of performing population PK profiling with WAPPS-Hemo
- 2) A) Present evidence supporting the clinical results you can expect to see by adopting WAPPS-Hemo based hemophilia treatment
 B) focusing on switching patients to EHL factor VIII

Note: Main focus on prophylaxis based on factor concentrates

Rurioctocog alfa pegol PK-guided prophylaxis in hemophilia A: results from the phase 3 PROPEL study

Robert Klamroth,¹ Jerzy Windyga,² Vlad Radulescu,³ Peter W. Collins,⁴ Oleksandra Stasyshyn,⁵ Hishamshah Mohd Ibrahim,⁶ Werner Engl,⁷ Srilatha D. Tangada,⁸ William Savage,⁸ and Bruce Ewenstein⁸

ABR, annualized bleeding rate; AJBR, annualized joint bleeding rate; FVIII, factor VIII. P<0.05 between the 1–3% and 8–12% trough arms is considered statistically significant.

P values are by χ^2 test

Klamroth, R. *Blood*, *137*(13), 1818–1827. 20

Impact of Adopting Population Pharmacokinetics for **Tailoring Prophylaxis in Haemophilia A Patients:** A Historically Controlled Observational Study

Michaela Stemberger^{1,2} Felix Kallenbach² Elisabeth Schmit² Alanna McEneny-King³ Federico Germini^{4,5} Cindy H. T. Yeung⁴ Andrea N. Edginton³ Sylvia von Mackensen⁶ Karin Kurnik⁷ Alfonso lorio4,8

100

90

80

70

60

50

40

30 20

10

Before

Stemberger M,. Thromb Haemost 2019; 119: 368–76.

Received: 14 September 2021 Revised: 5 April 2022 Accepted: 23 April 2022

DOI: 10.1111/hae.14584

ORIGINAL ARTICLE

Clinical haemophilia

Pharmacokinetic profile of children with haemophilia A receiving low-dose FVIII prophylaxis in Indonesia: A single centre experience

Fitri Primacakti 💿 🕴 Teny T. Sari 👘 Djajadiman Gatot 👘 Hikari A. Sjakti Novie A. Chozie

Conclusion: Our study identified inter-individual differences in the PK parameters using LDP of FVIII twice weekly. The inter-individual results in different dosing intervals advise the timing of LDP. Estimating individual PK parameters enables the identification of the optimal prophylaxis frequency to prevent bleedings.

For dosage and administration, please refer to the package insert.

Educational learning for the talk

- 1) A) Provide the foundational elements for the role and value of individualized population PK profiling
 - B) Discuss the practicalities of performing population PK profiling with WAPPS-Hemo
- 2) A) Present evidence supporting the clinical results you can expect to see by adopting WAPPS-Hemo based hemophilia treatment
 B) focusing on switching patients to EHL factor VIII

Note: Main focus on prophylaxis based on factor concentrates

Carcao MD et al. Comparative pharmacokinetics of two extended half-life FVIII concentrates (Eloctate and Adynovate) in adolescents with hemophilia A: Is there a difference? J Thromb Haemost. 2019 Jul 2;17(7):1085–96.

Contents lists available at ScienceDirect

Thrombosis Research

journal homepage: www.elsevier.com/locate/thromres

Full Length Article

A comparison of methods for prediction of pharmacokinetics across factor concentrate switching in hemophilia patients

Jacky K. Yu (PharmD)^a, Alfonso Iorio (MD, PhD)^b, Pierre Chelle (PhD)^a, Andrea N. Edginton (PhD)^a,

^a School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
^b McMaster-Bayer Endowed Research Chair for Clinical Epidemiology of Congenital Bleeding Disorde: Evidence and Impact, McMaster University, Ontario, Canada

HemaSphere

Article Open Access

Predicting Individual Changes in Terminal Half-Life After Switching to Extended Half-Life Concentrates in Patients With Severe Hemophilia

Olav Versloot¹, Emma Iserman², Pierre Chelle³, Federico Germini^{2,4}, Andrea N. Edginton³, Roger E. G. Schutgens¹, Alfonso Iorio², Kathelijn Fischer¹; on behalf of the prophylaxis working group of the International Prophylaxis Study Group^{*}

Observations vs Predictions (1)

- Kovaltry Switching algorithm
- Kogenate Linear fit on PK parameters
- Kogenate Linear fit on eta
- Kogenate Switching algorithm

McMaster University

NEALTH RESEARCH METHODS,

EVIDENCE, AND IMPACT

PK Study Data

ID	Factor Concent	trate	Tot IU	IU/kg	End of infusi	on
		Kovaltry 🕚	2000	31.7	2022-01-01 08:00	
Ti	me Elapsed (hh:mm) 🕕	Pre-dose 🕕	Plasma Factor Concentration 🕕		Concentration 🚯	Note
/ /	-00:35	0	0.070 IU/mL (7.0%)			
	+04:12		0.520 IU/mL (52.0%)			
	+27:56			0.130 IU/i	mL (13.0%)	

The WAPPS-Hemo calculator switching support function: first scenario – keep the same treatment plan

Treatment Plan	Kovaltry		Jivi			
	Мо	We	Fr	Mo	We	Fr
Dose, IU	2000	2000	2000	2000	2000	2000
Infusion Interval, Days	2.0	2.0	3.0	2.0	2.0	3.0
Peak, IU/mL (95% Cl)	0.7 (0.565-0.908)	0.73 (0.609-0.918)	0.73 (0.617-0.918)	0.92 (0.787-1.164)	0.98 (0.868-1.192)	0.99 (0.890-1.193)
Trough, IU/mL (95% Cl)	0.043 (0.012-0.095)	0.045 (0.013-0.103)	0.016 (0.002-0.051)	0.106 (0.034-0.211)	0.114 (0.035-0.233)	0.043 (0.007-0.129)
Weekly Dosage, IU	6000				6000	
Time above 0.01 IU/mL	100%				100%	
Time above 0.03 IU/mL	90%			100%		
Time above 0.15 IU/mL	43%		72%			
		Save			Save	

For dosage and administration of Damoctocog alfa pegol, please refer to the package insert.

The WAPPS-Hemo calculator switching support function: second scenario – less frequent infusions

Treatment Plan	Kovaltry		Ji	vi
	Мо	Th	Мо	Th
Dose, IU	2000	2000	2000	2000
Infusion Interval, Days	3.0	4.0	3.0	4.0
Peak, IU/mL (95% CI)	0.69 (0.540-0.906)	0.7 (0.559-0.908)	0.89 (0.720-1.159)	0.91 (0.762-1.164)
Trough, IU/mL (95% CI)	0.015 (0.002-0.045)	< 0.01 (0.001-0.026)	0.039 (0.006-0.105)	0.017 (0.001-0.063)
Weekly Dosage, IU	4000		4000	
Time above 0.01 IU/mL	94%		100%	
Time above 0.03 IU/mL	65%		89%	
Time above 0.15 IU/mL	27%		47%	
	Sa	ive	Sa	ve

The WAPPS-Hemo calculator switching support function: third scenario – dose calculation to achieve target trough

Switch simulation input data

Treatment Plan	Kovaltry	Jivi
Dose, IU (95% CI)	4724 (1108-32065)	1431 (396-9660)
Infusion Interval, Days	3.0	3.0
Peak, IU/mL (95% CI)	1.64 (0.315-14.546)	0.65 (0.160-5.622)
Trough, IU/mL	0.03	0.03
Weekly Dosage, IU	11023	3339
Time above 0.01 IU/mL	100%	100%
Time above 0.03 IU/mL	100%	100%
Time above 0.15 IU/mL	55%	45%
	Save	Save

University

HEALTH RESEARCH METHODS

Variations in PK parameters (AUC and clearance) observed in patients switching from Kovaltry to Jivi: Canadian switching experience

Single-centre, intra-patient comparison of Jivi PK with Kovaltry, using data routinely collected by the Hamilton-Niagara Regional Hemophilia Treatment Centre

Evaluate the changes in PK parameters in patients switching from Kovaltry to Jivi in real-world practice

EHL, extended-half-life; PK, Pharmacokinetics; HemA, Hemophilia A. Kovaltry: ocotocog alfa); Jivi: Damoctocog alfa pegol lorio A. et al. Poster PO041 presented at EAHAD 2022 McMaster

University

HEALTH RESEARCH METHOD

Changes in clinical outcomes in already well-maintained patients: Canadian switching experience

Single-centre, intra-patient comparison of Jivi clinical outcomes with Kovaltry, using data routinely collected by the Hamilton-Niagara Regional Hemophilia Treatment Centre

Kovaltry

Jivi

2

0

Evaluate the changes in effectiveness, utilization and patient satisfaction in patients switching from Kovaltry to Jivi in real-world practice

0.67

(0.00; 1.33)

Median ABR (Q1;Q3)

1.33

(0.00; 2.67)

Study duration was 18 months per patient

Kovaltry: ocotocog alfa; Jivi: Damoctocog alfa pegol Adapted from Matino D. et al. Poster PB1142 presented at ISTH 2022 McMaster

University

HEALTH RESEARCH.

Changes in utilization in already well-maintained patients: Canadian switching experience

Single-centre, intra-patient comparison of Jivi clinical outcomes with Kovaltry, using data routinely collected by the Hamilton-Niagara Regional Hemophilia Treatment Centre

Evaluate the changes in effectiveness, utilization and patient satisfaction in patients switching from Kovaltry to Jivi in real-world practice

Annualized utilization

Recorded infusions per week, n/week

	Kovaltry	Jivi
Median	2.7	2.2
(range)	(1.0 - 3.6)	(1.0 - 3.3)

Dose per infusion, IU/kg

	Kovaltry	Jivi
Median	31.5	30.5
(range)	(17.5 - 43.2)	(17.0 – 40.9)

Kovaltry: ocotocog alfa; Jivi: Damoctocog alfa pegol Adapted from Matino D. et al. Poster PB1142 presented at ISTH 2022

*For dosage and administration of Damoctocog alfa pegol, please refer to the package insert.

Educational learning for the talk

- 1) A) Provide the foundational elements for the role and value of individualized population PK profiling
 - B) Discuss the practicalities of performing population PK profiling with WAPPS-Hemo
- 2) A) Present evidence supporting the clinical results you can expect to see by adopting WAPPS-Hemo based hemophilia treatment
 B) focusing on switching patients to EHL factor VIII

Note: Main focus on prophylaxis based on factor concentrates

Individual response variability

Schmitt, C., *Thrombosis and Haemostasis*, 2021, 121(03), 351–360.

Dose-response predictability

Schmitt, C., *Thrombosis and Haemostasis*, 2021, 121(03), 351–360.

calibra

http://calibra.app

н	FMAIVTIC
	Quality Data [Improved Care

calibra	Choose which vials to use Filtering	g options	
K Back to Patient list Patient ID 10418	Blue, 30 mg/mL Purple, 60 mg/0.4 mL Turquoise, 105 mg/0.7 mL Brown, 150 mg/mL	Use only one vial size	
Patient Info Age Weight (kg) Height (cm) 17 75.8 173.5 2 Regimen Selection	Combinations Current available dose if using whole vials 150mg 1 possible combination	Optimized Vial Usage Calculated dose and injection frequency to achieve same plasma levels as theoretical dosing	Infuse Infuse every 150 mg 9 days (9.1)
1.5 mg/kg weekly 🗸 🗸	1 vial - 150 mg 1 ml - 1 syringe	Variation compared to partial vial usage	
Exact Calculated Dose: 113.7mg Calculation Method Select one method of calculation below	Brown 1 vial 150 mg/1 ml	Number of treatment days saved per year 12	Wastage avoided (mg) per year 1800
Vial Optimization	Warning: Do not combine HEMLIBRA vials of different cor mg/mt.) in a single injection.	Activate myCalibra (Patient App)	
Manual Input			
Mahlangu J, Iorio A, Kenet G. Emicizumab state-of-the-art ur	odate.	receive notifications of upcoming treatments, par make informed individual choices for planning th	tients can eir daily life.

Haemophilia. 2022 May 6;28(S4):103–10 doi/10.1111/hae.14524

- Population PK effectively models the variability in the population and makes it simple and feasible to estimate individual profiles
- Adoptions of PK tailored profiling is associated with patient important outcomes, even when using low dose prophylaxis
- Canadian data show how population PK applications use optimizes the value of EHLs.