ISTH 2023 Highlights: AHA and GTR

Alfonso Iorio, MD, PhD, FRCPC

Disclosure of commercial support

I have relationships with for-profit and not-for-profit organizations over the past two years:

NATURE OF RELATIONSHIP	NAME OF THE FOR-PROFIT OR NOT-FOR- PROFIT ORGANIZATION	DESCRIPTION OF RELATIONSHIP
Any direct financial payments including receipt of honoraria	Hemalytic Inc	Consultant
Membership on advisory boards or speakers' bureaus		
Funded grants of clinical trials	Pfizer, Sanofi, Roche, NovoNordisk	Local co-investigator
Patents on a drug, product or device	МасРорРК	IP co-owner
All other investments/relationship that could be seen as having the potential to influence the content of the educational activity	World Federation of Hemophilia	Co-Chair of the World Bleeding Disorders Registry / Gene Therapy Registry

Learning Objectives

Choose your own action words to start each objective

At the end of this presentation, participants will be better able to:

- Evaluate pros and cons of using Emicizumab as compassionate treatment for patient with acquired hemophilia
- Understand the need and value of prospective outcome collection (including patient reported outcomes) in patient with hemophilia undergoing gene therapy.

Emicizumab role in acquired hemophilia

- OC.06.2: Matthias M Engelen et al. Emicizumab for Acquired Hemophilia A A Case Series
- OC 06.3: Midori Shima et al. Results of the AGEHA trial (Phase III study of Emicizumab Prophylaxis for Acquired Hemophilia A).
- LB 01.2: Andreas Tiede et al. Emicizumab prophylaxis instead of immunosuppressive therapy in patients with acquired hemophilia A (AHA)
- PB0193: Praveen Gounder et al Financial impact of switching to emicizumab from conventional haemostatic agents in acquired haemophilia A

Emicizumab for acquired Hemophilia A – University Hospitals Leuven

	Statistics	Patients
Baseline characteristics	N	7
Age, y	Median (IQR)	75 (68-78)
Male	n/N (%)	5/7 (71)
Caucasian ethnicity	n/N (%)	7/7 (100)
Cancer		
Active	n/N (%)	0/7 (0)
History of cancer	n/N (%)	1/7 (14)
Auto-immune disease	n/N (%)	1/7 (14)
History of bleeding	n/N (%)	0/0 (0)
History of thrombosis		
Venous thrombo-embolism	n/N (%)	0/0 (0)
Arterial thrombosis	n/N (%)	0/0 (0)

N	7
n/N (%)	7/7 (100)
n/N (%)	2/7 (29)
n/N (%)	2/7 (29)
n/N (%)	2/7 (29)
n/N (%)	6/7 (86)
	N n/N (%) n/N (%) n/N (%) n/N (%)

Laboratory findings		
APTT		
At diagnosis (seconds)	Median (IQR)	90,8 (72,5-103)
Maximal (seconds)	Median (IQR)	103 (83,3-122,9)
FVIII activity		
At diagnosis (%)	Median (IQR)	0 (0-1)
Minimal (%)	Median (IQR)	0 (0-1)
FVIII inhibitor		
At diagnosis (BU/mL)	Median (IQR)	112 (31,9-190)
Maximal (BU/mL)	Median (IQR)	182 (104-228)

Matthias M Engelen et al. Emicizumab for Acquired Hemophilia A - A Case Series

	Treatment	Patients n/N (%)	Dose repetitions median (IQR)	Total dose in mg/kg median (IQR)
homostasie	rFVIIa (eptacog alfa)	3/7 (43)		1.7 (1.2-2.2)
nemostasis	Emicizumab	7/7 (100)	13 (9-15)	
immuno-	Rituximab	7/7 (100)	4 (4-4)	
suppression	Methylprednisolone	6/7 (86)	Individualized tapering	

Matthias M Engelen et al. Emicizumab for Acquired Hemophilia A - A Case Series

Prospective, Multicenter, Open-label Phase III Study (AGEHA*) of Emicizumab Prophylaxis in PwAHA

- The results of primary analysis have been reported previously; however, only Cohort 1 patients who started emicizumab treatment under immunosuppressive therapy (IST) were included [1]
- This final analysis included Cohort 2 data and long-term observation data of Cohort 1 (at primary analysis: up to 208 days ➡ at final analysis: up to 639 days)

*Clinical trial identification code: JapicCTI-205151

**The study was completed when all 2 patients who were still on emicizumab treatment were switched to commercial emicizumab

[1] Shima et al. J Thromb Haemost. 2023 Mar;21(3):534-545

BU, bethesda units; FVIII, factor VIII; IU, international units; LPLV, last patient last visit; PwAHA, patients with acquired hemophilia A

Modified Dosing Regimen for Acquired Hemophilia A

• PK simulation guided selection of a modified "one-week loading regimen" for acquired hemophilia A (AHA) to achieve rapid maximization and stabilization of the effect of emicizumab within one week.

Approved QW dosing regimen for CHA

Loading: 3 mg/kg QW for the first 4 weeks

Maintenance: 1.5 mg/kg QW from the 5th week onwards

Modified QW dosing regimen for AHA

Weeks with emicizumab prophylaxis

Solid curve: simulated median profile; Open circles: simulated median trough levels; Shaded area: simulated 5th to 95th percentile range; Vertical solid line: anticipated last trough time

Vertical solid line: anticipated last trough time point before achieving partial remission in approximately half of patients;

Horizontal dashed line: target efficacious exposure of > 30 µg/mL

Loading: 6 mg/kg on the 1st day and 3 mg/kg on the 2nd day of the 1st week Maintenance: 1.5 mg/kg QW from the 2nd week onwards

<u>The observed PK profile of emicizumab in the primary analysis was almost consistent with this PK</u> <u>simulation</u>

4

Proportions of Patients with or without Treated Bleeds

Safety Summary

- Asymptomatic, non-serious DVT considered related to emicizumab was reported in 1 patient in the primary analysis, and no other TE/TMA occurred thereafter
- No injection site reactions occurred at any point in the study

	Cohort 1 N=12	Cohort 2 N=2
Total number of AEs	95	25
Total number of patients with ≥1 AE, n (%)	12 (100)	2 (100)
AE with fatal outcome ^a	1 (8.3)	0
Serious AE ^b	5 (41.7)	1(50.0)
Emicizumab related AE ^c	3 (25.0)	2 (100)
Total number of patients who developed ADAs ^d , n (%)	2 (16.7)	0

^aExacerbation of concomitant disease (CKD) in 1 patient not related to emicizumab

^bCholangitis acute and cholangitis chronic in 1 patient, cholelithiasis and shock haemorrhagic in 1 patient, pneumonia, CKD, orthostatic hypotension, and Basedow's disease in 1 patient each

^cThrombocytopenia, prothrombin fragment 1+2 increased, DVT, Basedow's disease, and rash in 1 patient each. DVT was an asymptomatic and non-serious event, which may also be associated with bed rest and prednisolone.

^d1 of whom had decreased emicizumab exposure that was considered attributed to the ADAs detected after completing emicizumab administration ($t_{1/2}$ of the patient: 9.77 days, $t_{1/2}$ in overall population: 34.2 ± 14.3 days [mean ± SD])

ADA, anti-drug antibody; AE, adverse event; CKD, chronic kidney disease; DVT, deep vein thrombosis; SD, standard deviation; t_{1/2}, half-life; TE, thromboembolic event; TMA, thrombotic microangiopathy

GTH Acquired Hemophilia Working Group

Emicizumab prophylaxis instead of immunosuppressive therapy in patients with acquired hemophilia A (AHA)

Andreas Tiede et al. LB 01.2

Objectives of the GTH-AHA-EMI trial

- Assess efficacy of emicizumab to prevent new bleeds
- Establish safety of emicizumab in this elderly and fragile population of patients
- Postpone immunosuppression for at least 12 weeks

Results of the GTH-AHA-EMI trial

- Emicizumab was effective to prevent bleeds in AHA according to a predefined efficacy criterion
- Emicizumab was safe (thromboembolic events in 2 out of 47 pts)
- IST was safely deferred and overall survival was promising

Study overview

Baseline characteristics

- Single-arm, open label, multicenter (Germany, Austria)
- Emicizumab accelerated loading regimen
 Day 1: 6 mg/kg, day 2: 3 mg/kg
- Emicizumab maintenance
 \$\$ 1.5 mg/kg qw for 12 weeks
- Immunosuppression not allowed until end of primary efficacy period (12 weeks)
- Primary endpoint: clinically relevant breakthrough bleeds

Statistics

Characteristic	N = 47	
Age		
Median (IQR) – yr	76 (66-80)	
Sex – no. (%)		
Female	23 (49)	
Male	24 (51)	
Factor VIII activity in IU/dl		
Median (IQR) – IU/dl	1.4 (0.3-5.6)	
Factor VIII inhibitor		
Median (IQR) – BU/ml	12.2 (4.0-47.2)	

Predefined efficacy criterion (emicizumab considered effective if bleed rate significantly below that of IST-treated patients in historic GTH-AH 01/2010 study)

Clinically relevant bleeds

Pharmacokinetics

^{*} *below predefined efficacy criterion (p < 0.001)* Andreas Tiede et al. LB 01.2

Overall survival

Financial impact of switching to emicizumab from conventional haemostatic agents in acquired haemophilia A

PB0193: Praveen Gounder et al Financial impact of switching to emicizumab from conventional haemostatic agents in acquired haemophilia A

	Case 1	Case 2	Case 3
Age (years)	83	92	51
Gender	м	м	M
Weight (kg)	57.0	75.7	75.0
FVIII level at presentation (%)	6%	<1%	3%
Inhibitor level at presentation (BU)	13.7	266	8.3
Sites of bleeding	Cutaneous, urinary tract, muscle and gastrointestinal	Oral mucosa, cutaneous (limb)	Numbered according to admission (1) Haematemesis and retroperitoneal haematoma (2) Upper limb haematoma (3) Thigh haematoma (4) Thigh haematoma
Conventional haemostatic therapies	rFVIIa FEIBA	rFVIIa FEIBA	rFVIIa
Duration of emicizumab	4 weeks	3 weeks (ongoing)	12 weeks
Cost of conventional haemostatic therapy (AUD)	\$450,970	\$302,380	\$3,696,250 (cumulative cost across 4 admissions)

Emicizumab achieved haemostasis rapidly, did not potentiate DIC and appeared to significantly reduce the cumulative financial burden of rFVIIa and FEIBA. Full cost effectiveness studies are warranted.

Clinical outcomes in hemophilia gene therapy

- OC 20.1 Bleeding, FVIII activity, and safety 3 years after gene transfer with valoctocogene roxaparvovec: Results from GENEr8-1
 - Johnny Mahlangu
- OC 20.2 Gene therapy in hemophilia A: The impact of valoctocogene roxaparvovec on patient outcomes – initial results from Patient Reported Outcomes, Burdens and Experiences (PROBE) from the GENEr8-1 trial.
 - Mark W. Skinner
- OC 20.5 The WFH Gene Therapy Registry: A Collaborative Approach Towards a Global Resource for the Long-term Follow-up of People with Hemophilia Treated with Gene Therapy
 - Barbara Konkle

Bleeding, FVIII activity, and safety 3 years after gene transfer with valoctocogene roxaparvovec: Results from GENEr8-1

For participants who discontinued the study, missing FVIII values post-discontinuation were imputed to be 0 IU/dL through the data cutoff date for the analysis. CSA, chromogenic substrate assay; FVIII, factor VIII; mITT, modified intent-to-treat; OSA, one-stage assay; SE, standard error; Q, quartile.

Reduction in treated bleeds maintained over 3 years

Rollover population (N = 112)

Missing data were not imputed. ^aYear 3 data were based on N = 110 due to participants who discontinued from the study. ABR, annualized bleeding rate; SD, standard deviation; Q, quartile.

Participant characteristics and disposition

Baseline characteristics ¹ Age, years, mean ± SD	ITT (N = 134) 31.7 ± 10.3	ITT population All participants infused
Race, n (%)		N = 134
VVhite	96 (71.6)	
Asian	19 (14.2)	\downarrow
Black or African American	15 (11.2)	
Hawalian or Pacific Islander	1 (0.7)	Baseline PROBE scores
Not provided	3 (2.2)	n = 124/134 (93%)
Hispanic or Latino ethnicity, n (%)	7 (5.2)	
BMI, kg/m², mean ± SD	25.3 ± 4.6	
Medical history, n (%)		÷
Hepatitis B	20 (14.9)	
Hepatitis C	41 (30.6)	
HIV	2 (1.5)	n = 129/132 (98%)
Number of problem joints, ^a n (%)		
0	97 (72.4)	
1	17 (12.7)	
2	9 (6.7)	Week 104 PROBE scores
3	8 (6.0)	n = 126/130 (97%)
>3	3 (2.2)	

^aProblem joints were those with chronic joint pain, chronic synovitis, hemophilic arthropathy, limited motion, or recurrent bleeding.
 BMI, body mass index; HIV, human immunodeficiency virus; ITT, intent-to-treat; PROBE, Patient Reported Outcomes, Burdens and Experiences; SD, standard deviation.
 Ozelo M, et al. N Engl J Med. 2022;386(11):1013-25.

18

PROBE total scores improved at weeks 52 and 104

***P <0.001 compared to baseline using a linear mixed model. Data are mean ± SD or change from baseline (95% CI). CI, confidence interval; PROBE, Patient Reported Outcomes, Burdens and Experiences; SD, standard deviation.

19

Outcomes for pain improved

Outcomes for activities of daily living and mobility improved

21

**P <0.01 compared to baseline using generalized estimating equations assuming Bernoulli variances with identity link and exchangeable outcome correlations. CI, confidence interval.

GTR Objectives

Primary Objective

 to determine the long-term <u>safety</u> of factor VIII and factor IX gene therapies in patients with hemophilia

Secondary Objective

- to determine the long-term <u>efficacy</u> and the <u>durability</u> of factor VIII and factor IX gene therapies in patients with hemophilia;
- to assess long-term <u>quality of life</u> (EQ-5D-5L) and burden of disease (PROBE) post gene-therapy infusion.

Konkle BA, Pierce GF, Coffin D, Naccache M, Clark C, George LA, Iorio A, O'Mahony B, Pipe S, Skinner MW, Watson C, Peyvandi F, Mahlangu JN, for the ISTH subcommittee on Factor VIII, Factor IX and rare bleeding disorders. Core data set on safety, efficacy and durability of hemophilia gene therapy for a global registry: communication from the SSC of the ISTH. J Thromb Haemost. 2020 Oct. https://doi.org/10.1111/jth.15023

Data Collection

Data will be collected at:

- Baseline / Vector infusion
- Follow-up visits
 - Month 3, 6, 9, 12, 18, 24
 - Annually thereafter

Data will be captured in the registry in one of 2 ways:

- Through data transfer from existing national hemophilia registries
- Directly via participating HTCs

Capture both post-regulatory approval and clinical trial participants

Konkle BA, Pierce GF, Coffin D, Naccache M, Clark C, George LA, Iorio A, O'Mahony B, Pipe S, Skinner MW, Watson C, Peyvandi F, Mahlangu JN, for the ISTH subcommittee on Factor VIII, Factor IX and rare bleeding disorders. Core data set on safety, efficacy and durability of hemophilia gene therapy for a global registry: communication from the SSC of the ISTH. J Thromb Haemost. 2020 Oct. https://doi.org/10.1111/jth.15023

Implementation Partners - Global

Tr

Questions?

